

Robust Speaker Segmentation for Meetings: The ICSI Spring 2006 Diarization System

Xavier Anguera
Chuck Wooters
José Pardo

RT-06S Meeting Recognition Workshop

May 3rd, Bethesda, Maryland

Outline

- Tasks we participated in for RT-06s
- System description
- What's new since RT-05s
- Eval results
- Post-evaluation analysis
- Future work

Tasks and Submissions

(23 systems submitted)

- SPKR
 - □ Conf room:
 - MDM (1p, 4c)
 - SDM (1p, 1c)
 - □ Lecture room:
 - ADM (1p, 3c)
 - MDM (1p, 3c)
 - SDM (1p, 1c)
 - MSLA (1p)

- SAD
 - □ Conf room:
 - MDM (1p)
 - SDM (1p)
 - Lecture room:
 - ADM (1p)
 - MDM (1p)
 - SDM (1p)

The ICSI Speaker Diarization System

- Overall goal: Robustness and Portability across domains
- Agglomerative clustering
- Cluster merging uses a modified BIC
 - No penalty term in the BIC formula
- No pre-trained acoustic models
- Take advantage of multiple mics, when they are available, using delay&sum.

What's new?

- A new train-free speech/non-speech detector
- Improved cluster initialization ("friends and enemies" algorithm).
- Frame-based purification during merging.
- Initial number of clusters determined semiautomatically.
- Average speaker turn length only acousticallydriven.
- For MDM:
 - Modified delay-sum algorithm.
 - using delays in combination with acoustic features.

New Speech/non-speech

- Two-pass algorithm:
 - Step 1: Energy-based detector to locate silence regions with high confidence.
 - □ Step 2: Iterative clustering approach.
 - Models initialized with silence regions from first pass.
 - Convergence based on likelihood.

Improved Initialization

"Friends and enemies" algorithm:

- Speaker change detection using BIC.
- Create a first cluster as the most likely segment according to a general model.
- 3. Find the friends for this segment with highest cross-likelihood.
- 4. Iteratively find new "enemies" with smallest cross-lkld to existing clusters, and find its friends.
- 5. Train models and segment all the data.

"Friends and Enemies: A Novel Initialization for Speaker Diarization", X. Anguera et al., submitted to ICSLP 2006

м

Frame-based Purification

- Simpler than last year's segment-based purification.
- Problem: BIC-based cluster merging is adversely affected by "impure" data.
 - □ I.e. non-speech frames that occur in all clusters difficult to discriminate between clusters.
- Observation: most non-speech frames obtain the best lkld in all models.
- Proposed solution: Try to detect "impure" frames, using a likelihood-based metric, and exclude these during cluster comparison.

 $\overline{\mathcal{L}}(x[i] | \Theta_A) = \frac{1}{Q} \sum_{j=-(Q/2)}^{(Q/2)-1} \sum_{m=1}^{\widetilde{M}} \log(W_A[m] \mathcal{N}_{A,m}(x[i+j]))$

"Frame Purification for Cluster Comparison in Speaker Diarization", X. Anguera et al., MMUA 2006. And a related paper at ICASSP06

Initial Number of Clusters

- Last year an informed guess was made about the number of initial clusters (10 for Conf., 5 for Lect.).
- This year the initial number of clusters (K_{init}) is determined based on the length of the meeting (N_{total}), using:

$$K_{init} = \frac{N_{total}}{GM_{clus} CCR}$$

GM_{clus}= # Gauss per cluster, CCR = # frames necessary to train a Gaussian, to be optimized.

"Automatic Cluster complexity and Quantity Selection: Towards Robust Speaker Diarization", X. Anguera et al., MLMI 2006

Modified average speaker turn length

- The average speaker turn duration was artificially constrained by the chosen minimum turn duration and parameters α and β.
- Making α = 1 and β = 1 makes the average turn duration dependent only on the acoustic data.

MDM-specific Improvements

- Modified delay-sum algorithm (new code)
 - New noise thresholding to eliminate "bad quality" delays.
 - Smoothing of delays using Viterbi in 2 steps:
 - Select the 2-best delays from N-best GCC-PHAT peaks in each individual channel.
 - Select best delays vector across all channels.

MDM-specific Improvements (II)

- Modified delay-sum algorithm (II)
 - Modified channel weighting ($\alpha = 0.95$)

$$W_i[n] = \alpha W_i[n-1] + (1-\alpha)Xc_i[n]$$

Before:

$$Xc_{i}[n] = \frac{Xcorr(i, ref)[n]}{\sum_{j} Xcorr(j, ref)[n]}$$

Now:

Before: Now:
$$Xc_{i}[n] = \frac{Xcorr(i, ref)[n]}{\sum_{j} Xcorr(j, ref)[n]} \qquad Xc_{i}[n] = \frac{\sum_{k} Xcorr(i, k)[n]}{\sum_{j} \sum_{k} Xcorr(j, k)}$$

"Suspicious" frames elimination if $Xc_i[n] < \frac{1}{3(Nc-1)}$

м.

MDM-specific Improvements (III)

- Using delay&sum delays as features in combination with acoustic features.
 - Models built using a weighted combination of two separate feature streams, modeled by 2 separate GMM models.

$$\log p(x_{ac}[i], x_{del}[i] | \Theta_{tot}) = \alpha \cdot \log p(x_{ac}[i] | \Theta_{ac}) + (1 - \alpha) \cdot \log p(x_{del}[i] | \Theta_{dels})$$

□ It is used in the Viterbi segmentation and in the BIC models comparison.

$$\Delta BIC_{tot} = \alpha \cdot \Delta BIC_{aco} + (1 - \alpha) \cdot \Delta BIC_{del}$$

"Speaker Diarization for Multiple Distant Microphone Meetings: Mixing Acoustic Features and Inter-Channel Time Differences", J. M. Pardo et al., submitted to ICSLP 2006

Eval Results Conference Room - Spkr

Cond.	System ID	%DER	Description
MDM	p-wdels c-newspnspdelay c-wdelsfix c-nodels c-oldbase	35.77 35.77 38.26 41.93 42.36	Primary system. Same as last year, w/ delays and new spnsp. Same as primary, but init clusts = 16. Same as primary, but no delay feats. Same as last year's system, w/ new spnsp.
SDM	p-nodels c-oldbase	43.59 43.93	Primary system (no delay feats). Same as last year's system /w new spnsp.

Breakdown of errors by type for **primary systems**:

	Miss	FA	SpNsp	Spkr	Total
MDM	27.60	1.10	28.70	7.20	35.77
SDM	28.90	0.80	29.70	13.90	43.59

Eval Results Lecture Room - Spkr

Cond.	System ID	%DER	Description		
MDM	p-wdels	24.01	Primary system. (Same as conf. room system)		
	c-nodels	23.63	Same as primary, but no delay feats.		
	c-wdelsfix	24.53	Same as primary, but init # clusts = 10.		
	c-guessone	26.96	Guess one speaker all the time. No sp/nsp.		
SDM	p-nodels	23.95	Primary system (no delay feats).		
	c-guessone	26.96	Guess one speaker all the time. No sp/nsp.		
ADM	p-wdels	21.05	Same as MDM primary, but using all channels.		
	c-nodels	20.24	Same as primary, but no delay feats.		
	c-wdelsfix	22.11	Same as primary, but init # clusts = 10.		
	c-guessone	26.96	Guess one speaker all the time. No sp/nsp.		
MSLA	p-guessone	26.96	Guess one speaker all the time. No sp/nsp.		

Eval Results Conference Room - SAD

Cond.	System ID	%Error	%Miss	%FA	Description
MDM	p-dual	23.51	22.76	0.8	Two-pass system tuned to forced alignments.
SDM	p-dual	24.95	24.24	0.8	Two-pass system tuned to forced alignments.

Eval Results Lecture Room - SAD

Cond.	System ID	%Error	%Miss	%FA	Description
MDM	p-dual	13.83	9.3	4.5	Two-pass system tuned to forced alignments.
SDM	p-dual	14.59	10.0	4.6	Two-pass system tuned to forced alignments.
ADM	p-dual	13.22	9.3	3.9	Two-pass system tuned to forced alignments.

Post-evaluation analysis

Lecture room

Post-evaluation analysis

Conference room data evaluated using ICSI-SRI Forced Alignments.

Cond.	System ID	%DER FA	%DER hand
MDM	p-wdels c-newspnspdelay c-wdelsfix c-nodels c-oldbase	19.16 20.03 23.32 27.46 27.01	35.77 35.77 38.26 41.93 42.36
SDM	p-nodels c-oldbase	28.25 28.21	43.59 43.93

Future work

- Continue work on cluster initialization and purification.
- Add other acoustic features (e.g. PLP, prosody, etc.) as additional streams.
 - □ Try to improve both SDM and MDM/ADM conditions.
 - □ Dynamic stream weights.
- Experiment with alternatives to speech/nonspeech, e.g. voiced/unvoiced.

Questions?